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Measurement of the dynamic elastic moduli
of porous titanium aluminide compacts
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The dynamic elastic moduli of the porous alpha-two titanium aluminide compacts are

measured using an ultrasonic technique. Both shear and longitudinal velocities are

measured for compacts of different densities, making computation of all the four elastic

constants, namely, the Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio.

The dependence of these on the relative density are correlated and compared with some

earlier models, and some of the uncertainties in the earlier models are discussed.
1. Introduction
There is a significant amount of research directed
towards the measurement as well as the predictive
modeling of the effective macroscopic properties of
heterogeneous multiphase media. Such information is
important from engineering, technological and scient-
ific points of view. The effective property models
developed for multiphase materials have been success-
fully applied to porous materials by treating the
porosity either as a randomly distributed or intercon-
nected second phase. A general formulation for the
effective property of a porous medium of the form:

p"p
0
f (q) (1)

is popular in the literature, where p is the effective
property (such as conductivity, strength, elastic
moduli etc., p

0
is the corresponding property of the

fully dense material, q is the relative density (equal to
1-p, where p is the porosity), and f (q) is a function that
correlates the property to relative density. If Young’s
modulus, for example, is the property of interest, sev-
eral semi-empirical and analytical formulations can be
found in the literature [1—5]. Some of these are listed
below:

Duckworth [1]:

E (q)"E
0
exp(!bp) (2)

Phani and Niyogi [4] :

E (q)"E
0
(1!ap)n (3)

Ramakrishnan and Arunachalam [5]:

E(q)"E
0
(1!p2)/(1#b

0
p) (4)

In Equations 2—4, various constants a, b, b
0
, have been

empirically determined. The models cited above and
several other models available in literature have been
tested for different materials [6, 7]. However, an
understanding of the physical basis of various

formulations; correlating the formulations to the
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specifications of the precursor powder material (i.e.,
the particle shape, size, distribution etc.,) and an un-
derstanding of the physical meaning of the constants
used in the models, are still elusive. There are attempts
to develop rigorous effective property models as well
as to correlate the cross property relations. For
example, the work of Milton [8] and Gibiansky and
Torquato [9] relates the thermal conductivity to elas-
tic moduli of composite materials. Such models al-
though rigorous have not been validated with ad-
equate experimental data.

The present paper reports the measurement of dy-
namic elastic moduli of porous compacts of a model
material, alpha-two titanium aluminide (Ti—24Al—11Nb,
at %) using an ultrasonic technique. The ultrasonic
waves, which are elastic stresses of small amplitude,
propagate with different modalities (compressional or
shear) in the porous solid material. These elastic stress
waves satisfy the basic equations of linear elasticity
(Hooke’s law) and their velocities of propagation in
the material are directly related to the elastic moduli
(Young’s and shear) of the material at zero load (dy-
namic moduli). In principle, for a linear solid material,
the dynamic modulus should be equal in value to the
elastic modulus measured by any conventional mech-
anical test. However, in reality, because of the compli-
ance of the testing machines etc., there is a difference in
the values measured by the two methods. The dy-
namic moduli are generally (slightly) higher than the
correspondent static moduli measured with a mechan-
ical testing machine. For a linearly elastic material the
dynamic modulus more accurately represents the ac-
tual modulus (i.e., the incremental resistance to strain)
of the material.

The purpose of this study was to generate useful
elastic property—relative density correlations for the
model material used and to verify the available models
in the light of the experimental data. The correlations
developed in the present paper are of practical

use to map the nonuniform distribution of elasto—
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Figure 1 Non-uniform densification due to the ‘can shielding’ effect
observed during hot isostatic pressing (HIPing) of alpha-two tita-
nium aluminide in (a) finite element simulation model and (b)
experiments.

mechanical properties in components produced by
powder metallurgical processing. Fig. 1, for example
shows the finite element simulation prediction and
experimentally observed nonuniform density distribu-
tion in hot isostatic pressing of alpha-two titanium
aluminide. The nonuniform density distribution which
arises as a result of the interface friction (between
powder and encapsulation), stiffness of the encapsula-
tion material (in case of not isostatic pressing (HIP-
ing)) etc., can at best only be minimized. A significant
contribution of this work is the measurement of both
longitudinal and shear velocities in an elastic half
space and the deduction of all the elastic moduli by
suitably accounting for the Poisson’s ratio effect. This
is an improvement in the measurement technique used
by other workers, for example Wang [10].

2. Theory of dynamic moduli measurement
Ultrasonic waves are stress waves propagating in ma-
terials by inducing small (in the order of 10~7 mm)
elastic deformations of the material. As a result, the
ultrasonic propagation characteristics are mainly de-
pendent on the elastic properties of the materials.
Therefore, the waves propagation equations which are

based on linear elasticity theory can be used to calcu-
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late the dynamic moduli of a material, if the stress
wave velocities and density are measured indepen-
dently [11, 12].

If an elastic stress wave is propagating in an iso-
tropic semi-infinite medium due to the application of
a normal or a shear traction on the surface of the solid
medium, the displacement vector due to vibration
particles in the material is governed by the equation of
motion. The equation of motion can then be obtained
from the equilibrium equations and the constitutive
equations between stress and strain, where the factor
of proportionality is the elastic tensor. The elastic
tensor for an isotropic medium with density q can be
written as a function of the Lamé constants, k and l.

In the case of an elastic stress applying normal trac-
tion on the surface of the material, the displacement
vector in the solid is parallel to the axis of wave propa-
gation in the material, and the motion equation will
contain the velocity of propagation of the longitudinal
ultrasonic waves, C

L
, which is given by the expression:

C
L
"A

k#l

q B
1@2

(5)

In the case of an elastic stress applying shear traction
on the surface of the material, the displacement vector
in the solid is tangential to the axis of wave propaga-
tion in the material and the motion equation will
contain the velocity of propagation of the shear ultra-
sonic waves, C

S
, which is given by the expression:

C
S
"A

l
qB

1@2
(6)

Since the Lamé constants are related to the Young’s
modulus, E, the shear modulus, G (which is the same
as l), the bulk modulus, K, and the Poisson’s ratio, m,
the elastic moduli can be expressed as a function of the
density, the longitudinal velocity and the shear velo-
city of the material as follows:

E"4qC2
S C
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It is easily seen that Equations 7—10 provide a practi-
cal framework for the measurement of all the elastic
moduli using ultrasonic technique.

3. Experimental procedure
Alpha-two titanium aluminide powder produced by
PREP process with a particle size distribution of
!140/#400 (i.e., between 37—105 lm) was hot isos-

tatically pressed (HIPed) to different relative densities



at 1000 °C, for 1 h at pressures of 2, 7 and 70 MPa. In
order to get samples with intermediate densities cylin-
ders machined out of these HIPed samples were hot
pressed at 1000 °C. By a combination of HIPing and
hot die-pressing, samples with different relative densit-
ies (defined as the ratio of the density of a partially
dense compact to the theoretical density of a fully
dense compact) in the range of 0.7—1.0 were obtained.
The relative density was measured by direct method.
The density of the fully dense material is measured to
be 4.7 g per cc. The initial packing density (or tap
density) of the powder was found to be 0.63. Disks of
12.5 mm nominal diameter and 10 mm thickness were
prepared for ultrasonic measurement. Fig. 2 (a and b)
shows the typical porous microstructure of some of
the samples used.

The experimental setup for the measurement of the
velocities consisted of piezoelectric transducers (with
x-cut or y-cut crystals for longitudinal and shear wave
generation, respectively) operating in pulse-echo mode
[11]. The ultrasonic frequency used was in the range
of 2.25 —5.0 MHz so that the wavelength of ultra-
sound was much larger than the inherent porosity in
the material (c"kf, where c is either longitudinal or
shear wave velocity, k is the corresponding
wavelength, and f is the frequency of ultrasound).

Measured values of longitudinal and shear vel-
ocities for compacts of different relative densities were
used in Equations 7—10 to determine various elastic
moduli. Fig. 3 shows the measured longitudinal and
shear velocities as a function of relative density.

4. Results and discussion
Earlier work by Knudsen [6] has shown that below
a critical density (or equivalently above a critical por-
osity) for a given packing, the properties of the powder
compact go to zero. Since in the present work the
green density is approximately 63% (i.e., the critical
porosity is approximately 37%), it is assumed that the
properties are zero at this density level. As the density
increases during the HIPing cycle, the individual par-
ticles of the porous compact deform and form a bond
with their neighbouring particles, hence the properties
start to increase. However, at low density levels the
increase is not significant.

In this work, the variation of the Young’s modulus
with relative density has been extensively studied.
Fig. 4 shows the measured Young’s modulus as a func-
tion of relative density. Wagh et al., [13], postulated
that the exponent ‘n’ in Equation 3 has a value of 2.
Hasselman and Fulrath [14] found a similar exponent
for glass with spherical pores. Ashby [15] gave an
exact solution for E, as a power law of density for
cellular solids and determined the exponent to be 2.
However, Fig. 4 shows that the exponent n equal to
2 over predicts the effective Young’s modulus for any
density below 100%. Young’s modulus data measured
by different techniques by various researchers [16—18]
have been found to be a linear function of the relative
density. While the measured experimental data in the
present work can perhaps be fitted to a linear correla-

tion, a better fit is achieved by a power law of the form
Figure 2 Porous microstructure of alpha-two titanium aluminide
samples used in ultrasonic measurement. (a) HIPed at 2 MPa, 1 h,
1000 °C (b) HIPed at 7 MPa, 1 h, 1000 °C and diepressed at 1000 °C
to about 10% nominal strain.

Figure 3 The, (f) longitudinal and (r) shear velocities measured
using ultrasonic transducer for specimens of different densities.

E
1
"E

0
qn. Fig. 5 shows the variation of the measured

shear modulus with relative density. Recently, Lam
et al. [18] measured the Young’s modulus of alumina,
and proposed a linear model that correlates the rela-
tive Young’s modulus to a density function given as
(q!q

0
) /(1!q

0
) , where q is the current relative

density and q
0

is the initial relative density. Further,
Lam et al. found that other mechanical properties
such as the strain energy release rate as well as the

stress intensity factor were also linear variations of the
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Figure 4 The, (r) measured Young’s modulus of alpha-two tita-
nium aluminide compacts compared with power law models of the
type E"E

0
p2 (references [13—15]) signified with the solid line.

Figure 5 Measured shear modulus of alpha-two titanium aluminide
compacts as a function of relative density.

Figure 6 The; (m ) relative Young’s and (j) relative shear Moduli
(measured) plotted against the density function of Lam et al. [18]
for different initial densities.

same density function. Fig. 6 shows the relative
Young’s modulus as well as shear modulus of alpha-
two titanium aluminide plotted using the Lam et al.
density function. Notably, Lam et al. observed a linear
relation with a slope of 1 for alumina compacts of

initial densities q

0
"0.50 and 0.62.
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Figure 7 The; (r) relative Young’s and (f) relative shear moduli for
alpha-two titanium compacts compared with (h) the relative micro-
hardness from reference [19].

For alpha-two titanium aluminide also the linear
relationship is seen to be valid with q

0
"0.63, which is

the measured tap density. However, the elastic
modulus curve does not extrapolate exactly to zero
modulus as in the case of alumina as noted in reference
[18]. This is possibly due to the very low stiffness
exhibited by the assembly of powders at tap density. It
appears that at relative densities of the order of the tap
density, there is a finite, albeit small, modulus which
indicates that the assembly of powders has a small but
finite load bearing capacity. Wang et al. [10], have
shown that the ratio E/E

0
"G/G

0
where, G and

G
0

are the shear moduli of partially dense and fully
dense material respectively. Fig. 7 shows the relative
Young’s modulus and shear modulus plotted as
a function of relative density. The two curves for E/E

0
and G/G

0
almost overlap in Figs. 6 and 7.

The relative microhardness of the alpha-two tita-
nium aluminide compacts measured [19] is cross plot-
ted in Fig. 7. It has been demonstrated by Shamasun-
dar et al. [19] that the relative microhardness—relative
density correlation can be used to derive the stress
intensification factor. The latter has been used to
model the consolidation of different ceramic and
metal powders in a variety of processes [20, 21]. From
Fig. 7, it is seen that the relative elastic and shear
moduli follow the relative microhardness curve close-
ly. Thus, the trends in Fig. 7 indicate that the same
formulation could be used to model the consolidation
as well as map the distribution of mechanical proper-
ties in the compact. Fig. 8 shows that the measured
bulk modulus is more sensitive to the relative density.
The dependence of bulk modulus on relative density is
seen to be exponential in nature. An empirical relation
of the form K"0.035 exp (8.14q) seems to be the best
fit for the experimental data. Fig. 9 shows the mea-
sured Poisson’s ratio dependence on relative density.
Ramakrishnan and Arunachalam proposed a model
[5] for the effective Poisson’s ratio in terms of porosity
and the Poisson’s ratio of the fully dense material (m

0
),

which is of the form:
m " 0.25(4m
0
#3p!7m

0
p)/(1#2p!3m

0
p) (11)



Figure 8 Measured bulk modulus of alpha-two titanium aluminide
compacts as a function of relative density.

Figure 9 Measured Poisson’s ratio of alpha-two titanium aluminide
compacts of different relative densities. The measured data is sym-
bolised by (f) and data calculated from the model of Ramakrishnan
and Arunachalam is marked by the solid line.

They discussed the different trends of variation in
Poisson’s ratio with respect to relative density in the
literature, i.e., an increase in the Poisson’s ratio with
porosity when the m

0
was less than 0.25, a decrease in

the Poisson’s ratio with porosity when the m
0

was
more than 0.25, and a relative invariance of Poisson’s
ratio with porosity when the m

0
was of the order of

0.25. It was further demonstrated using a finite ele-
ment model that Equation 11 would predict experi-
mental trends by different researchers for different
materials. Fig. 9 shows that Equation 11 over predicts
the experimental data by about 12%.

5. Conclusions
Ultrasonic techniques have been successfully used to
measure the dynamic elastic moduli of porous com-
pacts of a model material. By measuring the longitudi-
nal and shear velocities as well as the density of a
porous compact, it has been shown that the elastic
moduli can be measured by properly accounting for
the Poisson’s ratio effect in the elastic half-space. It is
seen that the elastic modulus and the shear modulus
follow a power law relation as a function of relative

density. With the choice of an appropriate form den-
sity function the relation can be presented with a lin-
ear model. The correlations of elastic and shear
moduli with the relative density are found similar to
the correlations of relative microhardness to density,
indicating a possibility of mapping the elastic moduli,
if the stress intensification factor of the material is
known. The measured Poisson’s ratio is seen to obey
a linear correlation and the bulk modulus an exponen-
tial correlation with the relative density.
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